
21. PROBABILITY 

 

Probability is a branch of mathematics that deals with 

uncertainty, random or chance occurrences. Through 

the study of probability, we learn how to quantify the 

chances or likelihoods that are associated with 

various outcomes of an experiment. 

 

Terms used in probability 

The term experiment, in the topic of probability, has 

a precise meaning that may differ slightly from its 

everyday use as in science. 

 

An experiment is the process by which an 

observation or measurement is made.  

 

Examples of experiments in probability can be 

tossing a coin or die, selecting cards from a deck, 

conducting an opinion survey or testing an item to 

determine if it is defective.  

 

Consider the experiment of tossing an ordinary fair 

die. The results that are possible when the experiment 

is performed are called outcomes. For example, the 

possible results, in this case, are 1 or 2 or 3 or 4 or 5 

or 6.  Note that there is some degree of uncertainty as 

to which of these outcomes will occur. 

 

The set of all possible outcomes is called the 

sample space, S.  

 

Hence, the sample space is {1, 2, 3, 4, 5, 6}. 

 

An event, E is any subset of outcomes contained 

in the sample space.  

A simple event has exactly one outcome.  

A compound event has more than one outcome 

and is a collection of simple events. 

 

Consider the events:  

E1 = a six occurs   

E1 is a simple event, it has only one outcome, 

E1={6}.  

E2 = an odd number occurs 

E2 is a compound event as it consists of a set of 

simple events,  

E2 = {1, 3, 5} 

In calculating probabilities, it is necessary to 

determine if the event of interest is a simple or 

compound event. 

A favourable outcome is one that is desirable or 

required. In the experiment of tossing a die, if we are 

interested in the event,  

E3 = a prime number occurs, then the set  

E3 = {2,3,5} is our set of favourable outcomes.  

 

Equally likely outcomes 

In performing experiments we may find that there are 

cases where all the outcomes have the same chance 

of occurring. For example, if we flip a fair coin or 

toss a fair die, then each outcome has the same 

chance of occurring.  

These outcomes are equally likely or equiprobable. 

In the case of the coin, each outcome, Head or Tail, 

has the same probability. P (H) = P (T) = .  

In the tossing of the die, all six outcomes are equally 

likely events and may be written as: P(1) = P(2) = 

P(3) = P(4) = P (5) = P (6) = .  

So, events are equally likely if they have the same 

probability of occurring. 

 

Defining Probability 

 

For simple experiments with equally likely outcomes 

and a finite sample space, we calculate probabilities 

by using the following formula. 

 

If E is an event in an experiment, then the probability that 

E occurs is written as P(E), where  𝑃(𝐸) 

=
𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑠	𝑓𝑎𝑣𝑜𝑢𝑟𝑎𝑏𝑙𝑒	𝑡𝑜	𝑡ℎ𝑒	𝑒𝑣𝑒𝑛𝑡, 𝐸

𝑇𝑜𝑡𝑎𝑙	𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑠	𝑖𝑛	𝑡ℎ𝑒	𝑠𝑎𝑚𝑝𝑙𝑒	𝑠𝑝𝑎𝑐𝑒	
 

 

The simplest experiment to which probability applies 

is one in which there are two possible outcomes. For 

example, tossing a fair coin. 

H is the event of getting ‘a head’.  

The numerator = 1 since there is only one head or one 

outcome which is favourable to the event. 

Denominator = 2, since there are two possible 

outcomes, that is, head and tail. 
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The probability of obtaining a ‘Head’ when tossing a 

coin can be expressed as a decimal (0.5), a fraction 

(½), a percentage (50%) or in ratio form of 1:2. 

Expressing the probability in an exact form is 

desirable. As such, we find that expressing the 

probability as a numerical fraction is preferred. For 

instance, if P(E) = 
;

<
, there is no exact decimal 

equivalent to this value. 

 

Experimental and Theoretical Probability 

The above definition of probability is theoretical in 

nature and relies on the construction of a sample 

space. Sometimes this method is not possible and we 

have to rely on past experiences to estimate 

probabilities. In such cases, we use data from 

observations based on actual occurrences of past 

events. Probabilities based on weather predictions are 

estimated by such methods. 

  

When we use data from observations to calculate 

probabilities, we obtain results based on what 

actually happened. This is referred to as experimental 

probability. Data from frequency distributions are 

commonly used to calculate such probabilities. We 

refer to such probabilities as the relative frequency of 

an event, defined as follows: 

 

 

 

As an example, we can calculate the probability of 

drawing an ace from a deck of 52 playing cards by 

setting up an experiment, drawing one card at a time, 

and recording the result as ‘Ace’ or ‘not Ace’.  

If after 100 trials we get 10 Aces, then  

P(Ace) =  by experiment. 

We could have calculated the theoretical probability 

using the probability formula. There are 4 Aces in the 

deck and the number of favourable outcomes is 

therefore 4.  The number of possible outcomes is 52.  

  

 

Notice that the relative frequency may not be the 

same as the theoretical value. If we were to increase 

the number of trials in the experiment, then the 

experimental probability would become closer and 

closer to the theoretical probability. We may think of 

the theoretical value as the result that would be 

obtained if an infinitely large number of trials were 

conducted in the experiment.  

 

Basic Laws of Probability 

The first law of probability is concerned with the 

range of values that the probability of an event can 

take. It is stated below. 

 

1. The probability of an event, P(A) must lie in the 

interval . 

 

The smallest value of P(A) is zero. An impossible 

event has a probability of zero and it occurs when 

there are no events favourable to the outcome. For 

example, if A is the event - choosing a 7 on a die, 

then 𝑃(𝐴) = 0. A probability of zero is the smallest 

possible value of the probability of an event. So,

 for any event A. 

The largest value of P(A) is one. Such an event is one 

that is sure or certain to happen and has a probability 

of one. In this case, the number of outcomes 

favourable to the event is the same as the number of 

possible outcomes. For example, the probability of 

either a Head or a Tail occurs when a coin is tossed is 

one. A probability of one is the largest possible value 

of the probability of an event. So, for any 

event A. So . 

The second law in probability is concerned with the 

sample space and the set of all outcomes within it. It 

is stated below. 

 

2. The sum of the probabilities of all the outcomes in 

a sample space must total one. P(S) = 1.  

 

A Venn diagram is useful to represent this law. 

 
 

If we have a collection of disjoint events, say,  

  
Relative Frequency=

Number of times the event occurred

Total number of trials
=

n( A)

n

 

10

100
=

1

10

  

P( Ace) =
No. of outcomes favourable to the event

No. of possible outcomes
=

4

52
=

1

13
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{A1, A2, …, A8 }, whose union make up the sample 

space, then   

 

In other words, the sum of the probabilities of each 

possible outcome must total to one. 

 

Let us apply this law to an experiment in which three 

coins are tossed. The set of all outcomes are: 

 

{HHH, TTT, HTH, HTT, HHT, THT, THH, TTH}. 

P(3 heads) =⅛  P(2 Heads, 1 Tail) = ⅜ 

P(3 Tails) = ⅛  P(2 Tails, 1 Head) ⅜ 

 

Notice that each of these outcomes is distinct which 

means that no two of them can ever occur at the same 

time. 

The sum of all the probabilities 

 = ⅛ + ⅜ + ⅛ + ⅜ = 1 

 

The third law is really a special case of the second 

law when there are only two events in the sample 

space.  

 

If two events, A and B make up a sample space, then 

we can consider , that is, one event is the 

complement of the other. This means that either A 

occurs or that it does not occur. 

P(A) +P(  ) =  P(S) 

P(S) = 1 (from axiom 2) 

P(A) +P( ) =  1 

P( ) = 1 – P(A)  or   P(A) = 1 – P( ) 

 

If two events, A and  make up a sample space, 

then  where  𝑃(𝐴?) is the 

probability that event A does not occur. 

 

 

For example, if the probability, , that it will rain 

tomorrow is given by , then,  is the 

probability that it will not rain tomorrow, and  

  

 

 

Probability scale 

We know that the probability of an event lies 

between 0 and 1. We can now create a number line to 

plot certain probabilities and interpret their values 

based on the position on the scale.  The Probability 

Scale is shown below with some critical values. 

 

Events whose probabilities are closer to one are 

considered ‘more likely’, while events, whose 

probabilities are closer to zero, are considered ‘less 

likely’.  An event with probability equal to one-half 

has a 50-50 (or equal) chance of occurring. 

 

       0                                  0.5                                   1 

 
                   Unlikely                                   Likely               

Impossible                 Equal Chance                       Certain 

 

 

The Addition Rule  

We know from set theory that for two intersecting 

sets A and B, we can write their union as shown 

below. 

𝑛(𝐴	 ∪ 	𝐵) 	= 	𝑛(𝐴) 	+ 	𝑛(𝐵) 	− 	𝑛(𝐴	 ∩ 	𝐵) 

 

 

 

 

 

If we divide each term by the total number of 

outcomes in the sample space, we obtain 

𝑃(𝐴	 ∪ 	𝐵) 	= 	𝑃(𝐴) 	+ 	𝑃(𝐵) 	− 	𝑃(𝐴	 ∩ 	𝐵) 

This is the addition rule of probability. Recall that 

in set theory 𝐴𝑈𝐵, refers to A or B or both A and B. 

Similarly, we interpret the probability of A or B, as 

the probability of A or B or both A and B. The 

addition rule may be stated as follows: 

 If A and B are two events then,  

𝑃(𝐴	𝑜𝑟	𝐵) 	= 	𝑃(𝐴)	+ 	𝑃(𝐵) 	− 	𝑃(𝐴	𝑎𝑛𝑑	𝐵) 

 

We use this rule in situations where both events can 

occur at the same time. 
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Example 1 

A single card is drawn out of a deck of 52 playing 

cards. What is the probability of drawing a red card 

or a face card? 

 

Solution 

We define the events 𝑅 and 𝐹 as follows: 

R – Selecting a red card 

F – Selecting a face card 

It is possible that both R and F could have 

occurred at the same time when a single card is 

selected.  

     (26 of the cards are red)        

   (12 of the cards are face cards) 

 

𝑃(𝑅 ∩ 𝐹) =
I

J;
    (6 of the face cards are red) 

  

The probability of drawing a Red Card or a Face 

Card is 𝑃(𝑅 ∪ 𝐹).	Applying the addition rule: 

 

 

Addition Rule for mutually exclusive events 

From set theory, two sets are disjoint if there are no 

elements in common. Similarly, if two events are 

disjoint they cannot occur together. If there are only 

two disjoint sets, A and B, in the sample space, A and 

B cannot occur together, we refer to A and B as 

mutually exclusive events. 

 

The events A and B are mutually exclusive if they 

cannot occur together.  

 

 

 

For example, when a die is tossed, the events A and B 

are mutually exclusive, if  

Event A- a 3 turns up  

Event B- a 4 turns up 

Note that it is NOT possible that both A and B could 

have occurred at the same time. 

From a deck of cards, the events A and B are 

mutually exclusive, if  

Event A- selecting a King 

Event B - selecting a Queen 

Note that it is NOT possible that both A and B could 

have occurred at the same time. 

The addition rule for mutually exclusive events is 

obtained from the addition rule of probability by 
letting . It is stated as follows  

. 

Both cases are summarized as follows: 

 

Addition Rule 

If A and B are not mutually exclusive 

 

If A and B are mutually exclusive, 𝑃(𝐴 ∩ 𝐵) = 0, 

 

 

We may further extend the addition rule for any 

number of mutually exclusive events in a sample 

space. If are mutually exclusive 

events, then,  

P( or  or  or…or ) 

 

For example, if we toss a coin, the outcomes P(1), 

P(2), P(3), P(4), P(5) and P(6) are all mutually 

exclusive, so  

P(1 or 2 or 3 or 4 or 5 or 6) = P(1) + P(2)+ P(3) + 

P(4) + P(5)+ P(6) 

 

Example 2 

A class has 36 students. Each student studies either 

Literature or Spanish or both. Twenty students 

study Spanish and 25 study Literature. A student is 

selected at random, what is the probability that the 

student studies  

(a) Both subjects 

(b) Literature only? 

 

Solution 

The information can be represented in a Venn 

Diagram as shown below. 
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(b) P(Literature only)=
JI

;I
=

M

L
 

 

Example 3 

The probabilities of three teams A, B and C 

winning a badminton competition are  and 

 respectively. Calculate the probability that: 

a) Either A or B will win 

b) Either A or B or C will win 

c) None of these teams will win 

d) Neither A nor B will win 

 

Solution 

a)    

b) 𝑃(𝐴	or	𝐵	or	𝐶	will	win) =
J

;
+

J

U
+

J

L
=

VL

MU
       

c)

 

                               

d) P(Neither A nor B will win) 

   = 1- P(Either A or B will win) 

 

 

Sample Space for a discrete random variable 

We can use the laws of probability to solve problems 

involving random variables. A random variable is a 

variable whose values are outcomes of a random 

experiment. In tossing a coin, there are two possible 

outcomes while in tossing two coins there are four 

possible outcomes. The sample space enables us to 

calculate probabilities for any event.  

 

In tossing two coins, the sample space is {HH, HT, 

TH, TT}. The following probabilities are computed: 

P(Two heads) =
J

M
 

P(Two Tails) =
J

M
 

P(A head and a tail in any order) =
J

V
 

 

Notice that the sum of these probabilities is one 

because this set of outcomes are mutually exclusive 

and take into consideration all the possibilities.  

Let us construct a sample space for tossing two dice, 

a green and a blue. As shown below there are 36 

outcomes. 

 

6 (1,6) (2,6) (3,6) (4,6) (5,6) (6,6) 

5 (1,5) (2,5) (3,5) (4,5) (5,5) (6,5) 

4 (1,4) (2,4) (3,4) (4,4) (5,4) (6,4) 

3 (1,3) (2,3) (3,3) (4,3) (5,3) (6,3) 

2 (1,2) (2,2) (3,2) (4,2) (5,2) (6,2) 

1 (1,1) (2,1) (3,1) (4,1) (5,1) (6,1) 

 1 2 3 4 5 6 

 

We now define a random variable, S which represents 

the sum of the scores obtained when the dice are 

tossed. We can construct a sample space for this 

random variable as follows: 

 

6 7 8 9 10 11 12 

5 6 7 8 9 10 11 

4 5 6 7 8 9 10 

3 4 5 6 7 8 9 

2 3 4 5 6 7 8 

1 2 3 4 5 6 7 

 1 2 3 4 5 6 

 

Each cell in the table gives the sum of the scores on 

both dice. If S represents the sum of the scores on 

both faces, then we can construct a table which 

shows the probability distribution for all possible 

values of the total, s. 

 

s 2 3 4 5 6 7 8 9 10 11 12 

P(S=s) 1

36
 

2

36
 

3

36
 

4

36
 

5

36
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36
 

5

36
 

4

36
 

3

36
 

2

36
 

1

36
 

 

This distribution enables us to calculate probabilities 

such as: 

 

P(S< 5)=
M];]V]J

;I
=

J^

;I
,    P(S≥ 10)=

;]V]J

;I
=

I

;I
 

1 1
,
3 5

1

9

  

P A or B will win( ) =
1

3
+

1

5
=

8

15

( ) ( )None will win 1 A or B or C will winP P= -

 

= 1−
29

45
=

16

45

 

= 1−
8

15
=

7

15



The Multiplication Rule for Probability 

The multiplication rule can also be used to combine 

probabilities, but in such a case, the events must be 

independent. For example, in rolling two dice, we 

may be interested in the probability of getting a 6 on 

the first die and a 2 on the second die. The outcome 

of the first event does not influence the outcome of 

the second event.  

 

Independent events 

Two events, A and B are said to be independent if the 

probability of event B is not influenced or changed by 

the occurrence of event A and vice versa.  

In tossing two coins, the event that a head occurs on 

the first coin and a tail on the second coin are 

independent events. Notice the outcome of the first 

coin (getting an H or not) does not influence the 

outcome of the second coin (getting a T or not). We 

can represent this situation using a Venn Diagram. 

 

 
 

The shaded area, , indicates when A and B 

both occur. 

  

 

Independent events cannot be mutually exclusive, 

because for mutually exclusive events . 

We can now state the multiplication rule for 

probability. 

 

Multiplication Rule - Independent events 

If A and B are two independent events, then 

P(A ∩ B) = P(A) × P(B). 

 

This rule can be extended to two, three or any 

number of independent events. If A, B and C are all 

independent events, then 𝑃(𝐴	 ∩ 	𝐵	 ∩ 	𝐶) =

𝑃(𝐴) × 𝑃(𝐵) × 𝑃(𝐶) 

Example 4 

A coin is flipped and a die is tossed. Let H 

represent the event that a head is obtained when 

the coin is flipped and S represent the event that a 

six (6) is obtained when the die is tossed.   

Calculate the probability that both a head and a six 

are obtained. 

 

Solution 

Let P(H) = probability that a head occurs. 

Let P(6) = probability that a six occurs 

The sample space for the experiment has 12 

outcomes;  
{(H, 1), (H, 2), (H, 3), (H, 4), (H, 5), (H, 6), (T, 1), 

(T, 2), (T, 3)   (T, 4), (T, 5), (T, 6)} 

 

We are interested in combining the probability P(H) 

and P(S). 

P(H) = ,  

there are 6 favourable outcomes,  

(H, 1), (H, 2), (H, 3), (H, 4), (H, 5), (H, 6), 

P(6) = ,  

there are 2 favourable outcomes, (H, 6) and  (T, 6) 

 
To obtain the probability that both a head and a six 

are obtained we must calculate: 

P(H and S) =  The Venn diagram below 

illustrates how the solution is obtained. 

 

 
 

These are independent events since the outcome of 

one does not affect the outcome of the other, so we 

can multiply the probabilities. The intersection of H 

and S, shown shaded, indicates that H and S have  

 

 

 

 

A BÇ

  

P A and B( ) = P A∩ B( )
= P A( )× P B( )

  
P( A∩ B) = 0

6 1

12 2
=

2 1

12 6
=

( )P H SÇ

  

P H ∩ S( )
= P H( )× P S( )

=
1

2
×

1

6
=

1

12



Example 5 

Three events are defined as follows: 

H –a head is obtained when a coin is tossed. 

F – a five (5) is obtained when a die is tossed. 

A – an ace is obtained when a card is picked for a 

pack. 

Calculate the probability that all three events 

occur. 

 

Solution 

We may think of three separate sets and we are 

interested in the intersection of the three regions. 

P(a head and a five and ace)  

= P(H and F and A)  

 

 

Example 6 

A bag contains 12 balls, of which 5 are red (R) and 7 

are blue (B). The balls are indistinguishable apart 

from colour. We are interested in choosing 2 balls 

from the bag, one at a time.  

A ball is chosen at random from the bag, it is 

replaced and a second ball is chosen. 

(a) If the first ball is red, what is the probability that 

the second is also red? 

(b) If the first ball is not red, what is the probability 

that the second is also not red? 

 

Solution 

As the ball is replaced, the second pick would now 

be independent of the result of the first pick. By 

replacing the ball, the probability of choosing Red 

remains the same on both occasions. 

(a) P(1st is Red) =   P(2nd t is Red) =   

P(Red, then Red) =   

(ii) If the first ball is not red, what is the 

probability that the second is also red? 

As the ball is replaced, the number of balls in the 

bag remains unchanged.  

(b) P(1st is Not Red) =       P(2nd is Red) =   

P(Not Red, Red) =  

If there is a replacement of the ball after the 

second pick, third pick or any subsequent picks, 

then such events are independent and we apply 

the multiplication law of probability. 

 

Dependent events 

Dependent events are commonly found in 

experiments involving selection from a set without 

replacements. In the above example, where two balls 

were chosen from a set, the first ball was replaced 

and this did not affect the outcome of the second 

pick. 

If we were to repeat this exercise without replacing 

the first ball then this will have an effect on the 

outcome of choosing the second ball. 

We now restate the problem as follows: 

 

Example 7 

A bag contains 12 balls, of which 5 are red (R) and 7 

are blue (B). The balls are indistinguishable apart 

from colour. We are interested in choosing 2 balls 

from the bag, one at a time.  

A ball is chosen at random from the bag, it is not 

replaced and a second ball is chosen.  

(a) If the first ball is red, what is the probability that 

the second is also red? 

(b) If the first ball is not red, what is the probability 

that the second is also not red? 

 

Solution 

 (a) If the first ball is red, what is the probability 

that the second is also red? 

If the 1st ball chosen is R, then there will now be 

one less red ball from which to choose. 

There will also be one less ball in total from which 

to choose since the first ball was not replaced. 

P(Second is Red given that the first ball is Red)  

=   

(b) If the first ball is not red, what is the 

probability that the second is red? 

If the 1st ball chosen is not red, then the number of 

red balls remains the same (5), though the number 

of balls from which to choose is still one less than 

before. 

P(Second is red given that the first is not red) 

 

( )P H F A= Ç Ç

  

P H ∩ F ∩ A( ) = P H( )× P F( )× P A( )

=
1

2
×

1

6
×

4
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=

1
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5
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12
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5
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=
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7

12  

5

12

 

7

12
×

5

12
=

35
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5−1

12−1
=

4

11

 

=
5

12−1
=

5

11



Hence, we see the result of the 1st event affected 

the result of the next event.  

 

This is an example of dependent events.  

 

Dependent Events 

Two events are said to be dependent if the result 

(whether it be an occurrence or a non-occurrence) 

of one affects the result of the other. In other 

words, they are not independent.  

 

When solving problems involving dependent events, 

we must note that the sample space was reduced 

when we calculated the probability of an event when 

we had information on what happened before (for 

example when we selected the second ball we knew 

that a red was selected before). 

 

Conditional probability 

Before explaining this concept, let us revisit the 

concept of a sample space.  

In an experiment, two dice are tossed (a red and a 

yellow). The sample space is shown below. 

 

 1 2 3 4 5 6 

1 2 3 4 5 6 7 

2 3 4 5 6 7 8 

3 4 5 6 7 8 9 

4 5 6 7 8 9 10 

5 6 7 8 9 10 11 

6 7 8 9 10 11 12 

 

Let A = sum of the numbers is at least 9. 

Let B = the two scores are the same (doubles)  

 

The number of elements in the sample space, S = 36 . 

The numbers in the blue region of the table show the 

10 outcomes in which the sum is 9 or more. 

P(A) =    

The numbers highlighted in green are those whose 

scores on both dice are the same - (1,1), (2,2), (3,3), 

(4,4), (5,5) and (6,6). 

P(B) =    

We now define the conditional probability of B 

given A has occurred, written as P(B|A) as the 

occurrence of the event B, knowing that A has 

occurred.  

In other words, we are interested in the probability 

that the two scores are the same, given that their sum 

is at least 9. By simply looking at the sample space, 

we observe that two of the 10 possible scores whose 

sum is at least 9 belong to the set of repeated scores. 

Hence, the diagram above clearly shows this 

proportion as 2 out of 10. 

In calculating the conditional probability of B given 

A has occurred, we used a reduced sample space 

from 36 to 10 by removing all the numbers whose 

sum is less than 10. (the numbers in the blue region 

of the table) because we applied a given condition - 

A has occurred.  

We write,  

𝑃(𝐵|𝐴) =
𝑃(𝐵 ∩ 𝐴)

𝑃(𝐴)
=
2

10
 

We may think of the conditional probability of B, 

given A has occurred, as the proportion of A that is 

common to B.  

Without the diagram, we can apply this formula to 

calculate the conditional probability as follows: 

P(B|A)=
V/;I

J^/;I
 =

V

J^
 

where 

P( )=  and P(A)=  

The conditional probability of an event B in 

relation to an event A is the probability that event 

B occurs given that event A has already occurred. 

The notation for conditional probability is P(B|A), 

read as the probability of B given A.  

𝑃(𝐵|𝐴) =
𝑃(𝐵 ∩ 𝐴)

𝑃(𝐴)
 

It is sometimes convenient to express the rule as 

follows: 

𝑃(𝐵 ∩ 𝐴) = 𝑃(𝐵|𝐴) × 𝑃(𝐴) 
 

If we apply this result to independent events, we 

obtain the following: 

𝑃(𝐵|𝐴) =
𝑃(𝐵 ∩ 𝐴)

𝑃(𝐴)
=
𝑃(𝐴) × 𝑃(𝐵)

𝑃(𝐴)
 

[For independent events, 𝑃(𝐵 ∩ 𝐴) = 𝑃(𝐴) × 𝑃(𝐵)] 

10

36

6

36

( )

( )

P B A

P A

Ç
=

B AÇ
2

36

10

36



Hence,  

𝑃(𝐵|𝐴) = 𝑃(𝐵) 

Since the occurrence or non-occurrence of A does not 

affect the probability of event B, this result makes 

sense. 

 

Sample Space for a random variable 

Probability tree diagrams 

Calculating probabilities can often be simplified by 

using tree diagrams. Tree diagrams, as the name 

suggests, look like a tree, as they ‘branch out’ 

symmetrically. They are used to help us to visualise 

probability problems. The diagram is expected to 

show all the possible events. The first event is 

represented by a dot and from this dot branches are 

drawn to represent all the outcomes of the subsequent 

events.  

The probability of each outcome is written on its 

branch.  Here is a tree diagram for a single toss of a 

fair coin. 

 

 
 

 

There are two “branches”, heads and tails. The 

probability of each branch is written on the branch. 

The outcome is written at the end of the branch. 

When a tree diagram is constructed, we calculate the 

overall probabilities quickly and simply. If we were 

to toss a coin twice, we can now extend the tree to 

include all events in the sample space, as shown 

below. The first branch has two outcomes, H or T 

with 𝑃(𝐻) = 0.5 and 𝑃(𝑇) = 0.5. 

 

 
 

The second branch represents the toss of the second 

coin. There are four branches, each representing the 

following conditional probabilities - P(H|H), P(H|T), 

P(T|H) and P(T|T). The probability of each of the 

four outcomes occurring is computed on the right of 

the tree diagram by using the rule: 

𝑃(𝐵 ∩ 𝐴) = 𝑃(𝐵|𝐴) × 𝑃(𝐴) 

By looking at the diagram, one can observe the 

following: 

• P(Head and Head) = 0.5 ×0.5 = 0.25.  

• All probabilities add to 1.0. It is always wise 

to confirm this addition when a tree diagram 

is constructed. 

• The probability of getting at least one Head 

from two tosses can be calculated in two 

ways as shown below. 

 

𝑃(𝑇	𝑎𝑛𝑑	𝐻) + 𝑃(𝐻	𝑎𝑛𝑑	𝑇) + 𝑃(𝐻	𝑎𝑛𝑑	𝐻)	

= 	0.25 + 0.25 + 0.25 = 0.75	

OR 

 

1 − 	𝑃(𝑇	𝑎𝑛𝑑	𝑇) 	= 	1	–	(0.5 × 0.5) 	= 	0.75 

 

 

General principles in working with tree diagrams 

 

In working with tree diagrams 

• We multiply probabilities along the 

branches. 

• We add probabilities down the columns. 

 

 

 

 



Example 8 

A bag contains 3 black balls and 5 white balls. A 

ball is chosen at random and replaced. A second 

ball is then chosen. 

a) Construct a tree diagram to illustrate the 

data. 

b) Calculate the probability that 

i. two black balls are chosen. 

ii. a black ball is chosen on the 

second pick. 

 

 

Solution 

a) Since the ball is replaced after the first 

pick, the events are independent. 

 
(b) The probabilities of the possible outcomes are:       

 
     

  

       

 

Total probability  

 

Notice, the sum of the probabilities = 1, according 
to the law of total probabilities. 

 

i)  

 

ii)  

       

 

 

Example 9 

The probability of hiring a taxi from garage A, B 

or C is ,  and .  

The probability that the taxi arrives late from each 

garage is given as: , 

 and   

 

(i) Illustrate the information given on a tree 

diagram 

(ii) Determine the probability that a taxi 

chosen at random will come from garage 

C given that it is late. 

 

Solution 

 

 
 

(i) The probability that a taxi, chosen at random, 

will come from garage C, given that it is late. 

 

 

(ii)  

 

Let C be the event that a taxi comes from garage C. 

Let L be the event that the taxi arrives line. 

Required to calculate  

( )
3 3 9

,
8 8 64

P B B = ´ = ( )
3 5 15

,
8 8 64

P B W = ´ =

( )
5 3 15

,
8 8 64

P W B = ´ = ( )
5 5 25

,
8 8 64

P W W = ´ =

9 15 15 25
1

64 64 64 64
= + + + =

( )
3 3

and
8 8

P B B = ´
9

64
=

( ) ( ) ( )2nd is black and andP P B B or P W B=

9 15 24 3

64 64 64 8
= + = =

( ) 0.3P A = ( ) 0.5P B = ( ) 0.2P C =

( )Late from 0.07P A =

( )Late from 0.1P B =

( )Late from 0.2P C =

( )

( )

( )

( )

( ) ( ) ( )

Taxi willarrive late

is chosen and taxi is late

or is chosen and taxi is late

or is chosen and taxi is late

0.3 0.07 0.5 0.1 0.2 0.2

111

1000

P

P A

P B

P C

=

= ´ + ´ + ´

=

( )Taxi comes from given that it is lateP C

( )/P C L



 

 (from above) 

 

 

The probability that a taxi chose at random, will 

come from garage C given that it is late is . 

 

 

 

( )
( )

( )
/ (Conditional probability)

P C L
P C L

P L

Ç
=

( ) ( )Taxi is late and comes from

0.2 0.2

P C L P CÇ =

= ´

( ) 0.111P L =

( )
0.2 0.2

/
0.111

40

111

P C L
´

=

=

40

111


