5: ROOTS OF A QUADRATIC EQUATION

The general form of a quadratic equation

We have grown accustomed to recognising a quadratic equation in the form $ax^2 + bx + c = 0$. In this section, we will be introduced to a new format for such a quadratic equation. This format would express the quadratic in the form of its roots. It is a convenient form to know and it allows us the flexibility to switch from this form to the standard form.

Roots of a quadratic equation (\propto and β)

A quadratic equation in x is of the general form $ax^{2} + bx + c = 0$, where a, b and c are constants.

If we divide each term by a, then the quadratic equation can be expressed in an equivalent form with the coefficient of x^2 is equal to one as shown below. $ar^2 + br + c = 0$

)

$$ax^{2} + bx + c = 0$$

$$x^{2} + \frac{b}{a}x + \frac{c}{a} = 0$$
(1)

Now consider \propto and β as the roots of the quadratic. We can now rewrite the quadratic in the form:

 $(x-\alpha)(x-\beta)=0.$

By expanding we get,

$$x^2 - (\alpha + \beta)x + \alpha\beta = 0. \quad (2)$$

Equation (2) is an equivalent form of equation (1). In fact, any quadratic equation, in x, can always be expressed in the form of its roots.

We can replace ($\alpha + \beta$) by the 'sum of the roots' and $\alpha\beta$ by the 'product of the roots', to obtain the following form for a quadratic equation.

 x^{2} – (sum of roots)x + product of roots = 0

Sum and product of the roots of a quadratic equation

Equations (1) and (2) above are two equivalent forms of a quadratic equation.

Equating both forms we get:

$$x^{2} + \frac{b}{a}x + \frac{c}{a} = x^{2} - (\alpha + \beta)x + \alpha\beta$$

When we equate coefficients, the following is obtained:

$$\alpha + \beta = -\frac{b}{a}$$
 and $\alpha\beta = \frac{c}{a}$

We can now make a general statement about the roots of a quadratic.

For the quadratic equation $ax^2 + bx + c = 0$ the sum of the roots $=-\frac{b}{a}$ and the product of the roots $=\frac{c}{a}$

Example 1

If α	and	β	are	the	roots	of	the	quadratic
equation $x^2 - 3x + 2 = 0$, determine								
(i) the sum of the roots and								
(ii)	the	proc	duct	of the r	oots	S.	

Solution

In the quadratic equation $x^2 - 3x + 2 = 0$ a = 1, b = -3 and c = 2.

(i) The sum of the roots, $\alpha + \beta = -\frac{b}{a}$

$$\alpha + \beta = \frac{-(-3)}{1} = 3$$

(ii) The product of the roots, $\alpha\beta = \frac{c}{c}$

$$\alpha\beta=\frac{2}{1}=2.$$

Example 2

The quadratic equation $x^2 - 4x + 3 = 0$ has roots α and β .

- a) Obtain the equation whose roots are $\alpha + 1$ and $\beta + 1$.
- **b)** Obtain the equation whose roots are α^2 and β^2 .

Solution

If the equation $x^2 - 4x + 3 = 0$ has roots α and β , then a = 1, b = -4 and c = 3. Hence, $(\alpha + \beta) = 4$ and $\alpha\beta = 3$

To obtain an equation whose roots are $\alpha + 1$ and

 β + 1, we can substitute these roots in the following equation:

 $x^2 - (\text{sum of roots})x + \text{product of roots} = 0$

$$x^{2} - [(\alpha + 1) + (\beta + 1)]x + [(\alpha + 1)(\beta + 1)] = 0$$

$$x^{2} - [(\alpha + \beta) + 2)]x + [\alpha\beta + (\alpha + \beta) + 1] = 0$$

$$x^{2} - (4 + 2)x + (3 + 4 + 1) = 0$$

$$x^{2} - 6x + 8 = 0$$

This is the required equation.

Part b) To obtain an equation whose roots are α^2 and β^2 , we substitute these roots in:

$$x^{2} - (\text{sum of roots})x + \text{product of roots} = 0$$

$$x^{2} - (\alpha^{2} + \beta^{2})x + (\alpha^{2} \times \beta^{2}) = 0$$

$$x^{2} - (\alpha^{2} + \beta^{2})x + (\alpha^{2}\beta^{2}) = 0$$
[Recall: $(\alpha + \beta)^{2} = \alpha^{2} + \beta^{2} + 2\alpha\beta$]
$$x^{2} - ((\alpha + \beta)^{2} - 2\alpha\beta)x + (\alpha\beta)^{2} = 0$$

$$x^{2} - \{(4)^{2} - 2(3)\}x + (3)^{2} = 0$$

$$x^{2} - 10x + 9 = 0$$

This is the required equation.

Example 3

Given that $x^2 + (k-5)x - k = 0$ has real roots which differ by 4, determine i. the value of each root ii. the value of k.

Solution

If we let α be the smaller real root, then the other will be $(\alpha + 4)$.

Then the sum of the roots is : $\alpha + (\alpha + 4) = 2\alpha + 4$ The product of the roots is $\alpha(\alpha+4)$.

From the given equation $x^2 + (k-5)x - k = 0$,

The sum of the roots is: -(k-5)The product of the roots is: -kEquating coefficients, we have:

Sum of roots	Product	of roots
$2\alpha + 4 = -(k-5)$	$\alpha(\alpha+4)=$	= <i>k</i>
$2\alpha + 4 = -k + 5$	$k = -\alpha$	$(\alpha + 4) \qquad (2)$
$k = 1 - 2\alpha \qquad (1$		

Equating equations (1) and (2) to eliminate k, we have:

$$-\alpha^2 - 4 \alpha = 1 - 2 \alpha$$
$$\alpha^2 + 2 \alpha + 1 = 0$$
$$(\alpha + 1)(\alpha + 1) = 0$$
$$\alpha = -1$$
The value of k: $k = 1 - 2\alpha = 1 - 2(-1) = 3$ \therefore Roots are -1 and $-1 + 4$ The roots are -1 and 3.

Alternative Method

If we let α be the smaller real root, then the other will be $(\alpha + 4)$.

Hence the quadratic equation may be expressed as

$$(x-a)(x-(\alpha+4)) = 0$$
$$(x-a)(x-\alpha-4) = 0$$
$$x^{2} - \alpha x - \alpha x + \alpha^{2} - 4x + 4\alpha = 0$$
$$x^{2} + (-2\alpha - 4)x + (\alpha^{2} + 4\alpha) = 0$$

Equating coefficient of x, we obtain

$$-2\alpha - 4 = k - 5$$
$$-2\alpha - 4 = k - 5$$
$$k = 1 - 2\alpha$$
$$\therefore \alpha = \frac{1 - k}{2}$$

Equating constant terms, we obtain

$$\alpha^{2} + 4\alpha = -k$$

$$\therefore \left(\frac{1-k}{2}\right)^{2} + 4\left(\frac{1-k}{2}\right) = -k$$

$$\frac{1-2k+k^{2}}{4} + 2 - 2k + k = 0$$

$$1 - 2k + k^{2} + 8 - 8k + 4k = 0$$

$$k^{2} - 6k + 9 = 0$$

$$(k-3)^{2} = 0$$

$$k = 3$$

When, $k = 3$, $\alpha = \frac{1-3}{2} = -1$

$$\therefore$$
 Roots are -1 and $-1 + 4$
The roots are -1 and 3 .